1

Relación fenotípica del diámetro de fibras de lana con pesos corporales y con caracteres de la lana en ovinos Merino de la Patagonia¹

Joaquín Mueller Instituto Nacional de Tecnología Agropecuaria, EEA Bariloche

Introducción

Las lanas producidas por ovejas adultas de raza Merino en la Patagonia tienen un promedio de diámetro de fibras (PDF) entre 20 y 21 mic, con variaciones anuales de hasta 2 micrones (Mueller et al 2001). Lana de borregos/as (primera esquila) es 2 a 3 mic más fina y lana de carneros 1 a 2 mic más fuerte que la de ovejas adultas. En la última década se acentuó la diferencia de precios a favor de lanas más finas. La respuesta del precio es exponencial con lanas sanas cuando el PDF baja de 20 mic. Este premio en el precio para lanas finas ha motivado el interés por el afinamiento de las lanas a través de selección e introducción de germoplasma afinador. Sin embargo muchos productores temen pérdidas importantes de producción y de adaptación de ovinos productores de lanas más finas ya que consideran que animales con lana más fina son más pequeños y producen menos lana. A su vez consideran que los pesos corporales más bajos en ovinos de lana fina están correlacionados con bajos pesos al nacimiento y en consecuencia con menor sobrevivencia. Existe amplia literatura sobre este tipo de relaciones (correlaciones fenotípicas) incluyendo aquella de relevancia en programas de mejora genética (correlaciones genéticas) por ejemplo en Fogarty (1995) y Atkins (1999). En el presente trabajo se analiza la relación fenotípica de PDF con el crecimiento de corderos y con características de la lana en majadas patagónicas.

Materiales y Métodos

Se utilizaron cuatro bases de datos independientes y con características diferentes. Más adelante se describen estas bases y los modelos lineales usados para ajustar los datos. En todo caso con los residuales se calcularon correlaciones y regresiones de caracteres de interés con PDF utilizando procedimientos de mínimos cuadrados generalizados, correlación y regresión del paquete estadístico SAS (1999), consignando significancia estadística con probabilidad del 5%. Las características de la lana fueron determinadas analizando muestras de vellón de la zona del costillar de los animales obtenidas a la primer esquila con 14 neses de edad (14m) o siguientes y utilizando procedimientos estándar del Laboratorio de Lanas de INTA Bariloche (Duga 2000). Los pesos de vellón son los obtenidos en el galpón de esquila sin barriga ni pedazos y los rindes son al lavado con 16% de regain. Los pesos corporales son post esquila con desbaste.

A. Datos de la majada del Campo Experimental Río Mayo

Los datos de Río Mayo provienen de una investigación sobre efectos y secuelas de la subnutrición invernal y comprenden hembras y capones de la majada general Merino (los datos originales también incluían datos de raza Corriedale) sometidas a 6 tratamientos nutricionales desde el primer invierno y hasta la tercer esquila. Los animales fueron esquilados como corderos antes de comenzar los tratamientos. El ensayo se repitió tres años y se registraron datos de crecimiento y lana hasta la tercer esquila (y el peso de vellón de cordero al inicio del ensayo) y de crecimiento de corderos nacidos en los dos primeros partos. Los caracteres considerados, modelos aplicados y su ajuste se presentan en Tabla 1. Se observa que hubo dificultad para remover factores de variación

_

¹ Comunicación Técnica INTA EEA Bariloche. 2001. PA 393, 9 p.

en el rinde al lavado y en los pesos de corderos, en especial, al nacimiento. Modelos con interacción tratamiento x año mejoran muy poco el nivel de ajuste.

Tabla 1: Registros, modelos y ajuste de datos de Río Mayo

Variable	Registros	Modelo de ajuste	Ajuste
Peso vellón 14m	673		62
Peso vellón 24m	679		34
Peso vellón 36m	647		49
PDF 14m	658	Año de nacimiento (77-79), sexo (ovejas y	32
PDF 24m	655	capones) tratamiento (1-6)	12
PDF 36m	642	capones) tratamento (1-0)	7
Rinde 14m	672		17
Rinde 24m	661		5
Rinde 36m	640		6
Peso al nacimiento	289		6
primer cordero		Año de nacimiento (79-81), sexo de cordero,	
Peso a la señalada	248	tratamiento de madre	54
primer cordero			
Peso al destete primer	238	Año de nacimiento (79-81), sexo de cordero,	49
cordero		tratamiento de madre, días desde nacimiento	
Peso al nacimiento	308	(como covariable)	20
segundo cordero		,	
Peso a la señalada	268	Año de nacimiento (80-82), sexo de cordero,	39
segundo cordero		tratamiento de madre	
Peso al destete	266	Año de nacimiento (80-82), sexo de cordero,	36
segundo cordero		tratamiento de madre, días desde nacimiento	
		(como covariable)	

B. Datos de la majada del Campo Experimental Pilcaniyeu

En este caso los datos provienen de la majada general separada en cuatro majadas experimentales cerradas y sujetas a selección artificial (3 seleccionadas y una testigo) que fueron manejadas en conjunto produciendo progenie con registros desde 1984 hasta 1995. Se registraron datos de cordero y primer esquila. En Tabla 2 se presentan detalles del análisis efectuado.

Tabla 2: Registros, modelos y ajuste de datos de Pilcaniyeu

Variable	Registros	Modelo de ajuste	Ajuste
Peso al nacimiento	5403	año de nacimiento, majada, sexo, tipo de	34
propio		nacimiento y día de nacimiento (covariable)	
Peso al destete propio	4531	año de nacimiento, majada, sexo, tipo de	59
		nacimiento y edad al destete (covariable)	
Peso 14m	5355		57
Peso vellón 14m	5440	año de nacimiento, majada y sexo	48
Rinde 14m	5423	ano de nacimiento, majada y sexo	22
PDF 14m	5434		38

C. Datos de la Central de Prueba de Pilcaniyeu

Los datos utilizados provienen de la progenie de padres de diferente origen (incluyendo un 20% de importados) evaluados sucesivamente en la Central de Prueba de Pilcaniyeu en el marco de un Convenio INTA AACM. La mayoría de las ovejas son hijas de los padres evaluados por lo que los animales medidos corresponden a una población de gran variabilidad genética (análisis no publicados) en la cual muchos padres combinan características deseables, como por ejemplo bajo PDF y alto peso de vellón. Los datos incluyen mediciones adicionales sobre machos de segunda esquila (a los 26 meses de edad). Los modelos ajustaron en forma moderada los datos salvo para coeficientes de variación y proporción de fibras mayores a 30 mic que en ambas esquilas tuvieron ajustes pobres (Tabla 3).

Tabla 3: Registros, modelos y ajuste de datos de Central de Prueba de Pilcaniyeu

Variable	Registros	Modelo de ajuste	Ajuste	
Peso al nacimiento	2289	Año de nacimiento (1991, 1993-2000),	44	
		sexo (macho hembra),		
		tipo de nacimiento (simple mellizo)		
Peso al destete	1884	Año de nacimiento (1991, 1993-1999),	52	
		sexo (macho, hembra),		
		tipo de nacimiento (simple, mellizo)		
Peso 14m	1646		48	
Peso vellón 14m	1647	Año de nacimiento (1991, 1993-1998),	52	
Rinde 14m	1641	sexo (macho, hembra)	41	
PDF 14m	1641		33	
CV PDF 14m	929	Año de nacimiento (1996-1998), sexo (macho,	4	
Fibras mayores a 30	929	hembra)	7	
mic 14m		nemora)		
Peso 26m	668	Solo machos de segunda esquila (1993-1998)	46	
Peso vellón 26m	667	5010 macnos de segunda esquita (1775-1776)	40	
Rinde 26m	665	Solo machos de segunda esquila (1993-1997)	6	
PDF 26m	666	5010 macros de segunda esquita (1775-1777)	18	
CV PDF 26m	447		3	
Fibras mayores a 30	447		8	
mic 26m				
Largo mecha 26m	448		44	
CV Largo mecha 26m	448	Solo machos de segunda esquila (1995-1997)	10	
Resistencia a la	448	(CV Resistencia a la tracción 26m desde 1996)	32	
tracción 26m		(C v resistencia a la tracción 2011 desde 1990)		
CV Resistencia a la	352		2	
tracción 26m				
Brillo 26m	367			
Color 26m	367		2	

D. Datos del plantel de Cabaña Leleque

En este caso los datos provienen del plantel de una cabaña influyente con animales manejados en forma preferencial. En Tabla 4 se observa que la inclusión de año y sexo permitió un moderado ajuste de los datos salvo para rendimiento al lavado que al igual que en los análisis previos mantiene una proporción importante de variabilidad sin explicar.

Tabla 4: Registros, modelos y ajuste de datos de Cabaña Leleque

Variable	Registros	Modelo de ajuste	Ajuste
Peso 14m	3323		50
Peso vellón 14m	3348	año de nacimiento (1989-1999) y sexo (borrego	55
Rinde 14m	3363	y borrega)	17
PDF 14m	3363	-	41

Resultados

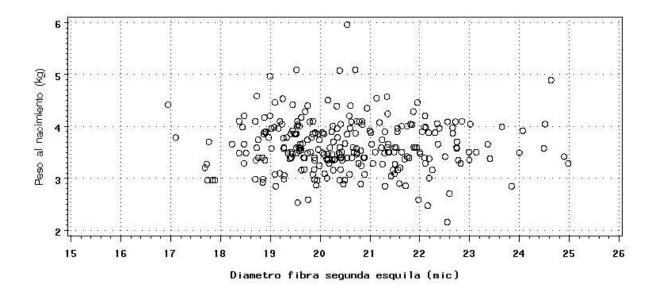

En Tabla 5 se presentan resultados para los datos de Río Mayo. Se puede observar que la correlación de PDF con peso de vellón es de 0.33 en la primer esquila pero que se reduce a 0.23 para la tercer esquila. Las regresiones no superan los 0.08 kg/mic. La correlación de PDF entre esquilas (repetibilidad) resultó de 0.55 para las primeras dos esquilas y algo mayor entre las siguientes dos. Las correlaciones y regresiones de PDF con rinde al lavado y con los pesos de corderos fueron insignificantes o muy bajas.

Tabla 5: Correlaciones y regresiones fenotípicas entre finura y caracteres de la lana y crecimiento de corderos de majada de Río Mayo.

¥7 • 11	Correlaciones			Regresiones (/mic)		
Variable	PDF 14	PDF 24	PDF 36	PDF 14	PDF 24	PDF 36
Peso vellón 14m (kg)	0.33 *	0.21 *	0.15 *	0.05 *	0.03 *	0.02 ns
Peso vellón 24m (kg)	0.19 *	0.32 *	0.22 *	0.06 *	0.08 *	0.07 *
Peso vellón 36m (kg)	0.11 *	0.16 *	0.23 *	0.03 ns	0.06 *	0.05 *
PDF 14m (mic)		0.55 *	0.50 *		0.49 *	0.46 *
PDF 24m (mic)	0.55 *		0.63 *	0.54 *		0.64 *
PDF 36m (mic)	0.50 *	0.63 *		0.56 *	0.71 *	
Rinde 14m (%)	-0.09 *	0.07 ns	0.09 *	0.15 ns	0.61 *	0.89 *
Rinde 24m (%)	-0.08 *	-0.11 *	-0.10 *	0.05 ns	-0.40 ns	-0.25 ns
Rinde 36m (%)	-0.02 ns	-0.05 ns	-0.15 *	0.57 ns	-0.33 ns	-0.53 ns
Peso al nacimiento, primer	-0.02 ns	-0.02 ns	-0.06 ns	-0.01 ns	-0.02 ns	-0.04 ns
cordero (kg)						
Peso al nacimiento, segundo	0.05 ns	0.01 ns	0.01 ns	0.02 ns	0.01 ns	0.00 ns
cordero (kg)						
Peso a la señalada, primer	0.12 ns	0.05 ns	0.03 ns	0.13 ns	0.01 ns	-0.04 ns
cordero (kg)						
Peso a la señalada, segundo	-0.07 ns	0.02 ns	-0.04 ns	-0.08 ns	0.00 ns	-0.07 ns
cordero (kg)						
Peso al destete primer cordero	0.14 *	0.08 ns	0.08 ns	0.22 ns	0.04 ns	-0.05 ns
(kg)						
Peso al destete segundo cordero	-0.06 ns	-0.01 ns	-0.04 ns	-0.07 ns	-0.07 ns	-0.12 ns
(kg)						

En Figura 1 se presenta la distribución de pesos al nacimiento del primer cordero de acuerdo al diámetro de fibras del segundo vellón de sus madres (esquila preparto). Se observa que hay un amplio rango de pesos por cada categoría de diámetro. Relaciones similares se pueden graficar para pesos a la señalada y pesos al destete; como así también para pesos del segundo cordero y correspondiente esquila de madres.

Figura 1: Pesos al nacimiento de corderos según diámetro de fibra de sus madres

En Tabla 6 se presentan resultados de las majadas de Pilcaniyeu. Las correlaciones y regresiones son insignificantes, salvo por la relación de PDF con el peso de vellón.

Tabla 6: Correlaciones y regresiones fenotípicas en majadas experimentales de Pilcaniyeu

Variable	Correlaciones con PDF 14m	Regresiones (/mic)
Peso al nacimiento propio (kg)	-0.02 ns	-0.01 ns
Peso al destete propio (kg)	0 ns	0.00 ns
Peso 14m (kg)	0.05 *	0.06 ns
Peso vellón 14m (kg)	0.25 *	0.11 *
Rinde 14m (%)	-0.09 *	-0.34 *

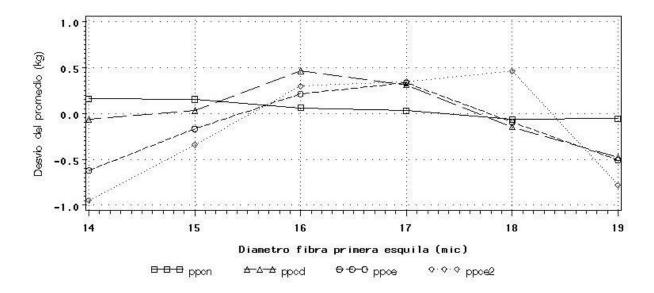

En Tabla 7 se presentan resultados para datos de la Central de Prueba de Pilcaniyeu. Nuevamente no se observan relaciones significantes aparte de las esperadas con porcentaje de fibras mayores a 30 mic. La correlación con peso al nacimiento incluso resultó algo negativa indicando que animales finos han nacido algo más pesados. La relación de PDF con peso de vellón, largo de mecha y resistencia a la tracción en segunda esquila resultó levemente positiva.

Tabla 7: Correlaciones y regresiones fenotípicas para datos de Central de Pilcaniyeu

Vortable	Correlaciones		Regresiones (/mic)		
Variable	PDF 14m	PDF 24m	PDF 14m	PDF 24m	
Peso al nacimiento propio (kg)	-0.12 *	-0.10 *	-0.06 ns	-0.07 *	
Peso al destete propio (kg)	-0.01 ns	-0.02 ns	0.08 ns	-0.07 ns	
Peso 14m (kg)	0.03 ns	0.11 *	0.41 ns	0.35 ns	
Peso vellón 14m (kg)	0.06 *	0.03 ns	0.03 ns	0.01 ns	
Rinde 14m (%)	0.02 ns	0.02 ns	-0.12 ns	-0.01 ns	
PDF 14m (mic)		0.70 *		0.59 *	
CV PDF 14m (%)	0 ns	0.01 ns	-0.08 ns	0.03 ns	
Fibras mayor a 30mic 14m (%)	0.51 *	0.42 *	0.26 *	0.19 *	
Peso 24m (kg)	0.06 ns	0.12 *	0.38 ns	0.38 ns	
Peso vellón 24m (kg)	0.05 ns	0.16 *	0.01 ns	0.06 *	
Rinde 24m (%)	-0.03 ns	-0.03 ns	0.07 ns	0.06 ns	
CV PDF 24m (%)	0.02 ns	0 ns	0.11 ns	0.09 ns	
Fibras mayor a 30 mic 24m (%)	0.38 *	0.58 *	0.33 *	0.41 *	
Largo mecha 24m (mm)	0.09 ns	0.20 *	1.09 ns	1.22 *	
CV Largo de mecha 24m (%)	0.07 ns	0.04 ns	-0.02 ns	0.03 ns	
Resistencia a la tracción 24m (N/ktex)	0.13 *	0.22 *	0.67 ns	1.05 *	
CV Resistencia a la tracción 24m (%)	0.01 ns	0.11 ns	0.49 ns	0.70 ns	
Brillo 24m (Y)	0.22 *	0.18 *	0.78 *	0.57 *	
Color 24m (Y-X)	0.31 *	0.39 *	0.37 *	0.39 *	

Todas las relaciones son consistentes con el modelo lineal. La relación de PDF 14m con peso corporal a la segunda esquila parece tener una forma más bien cuadrática (Figura 2) aunque por muy poco no alcanza significancia estadística (P=0.051).

Figura 2: Relación de diámetro de fibras con el peso al nacimiento (PPCN), al destete (PPCD), a la primer esquila (PPCE) y a la segunda esquila (PPCE2) en Central de Prueba de Progenie de Pilcaniyeu.

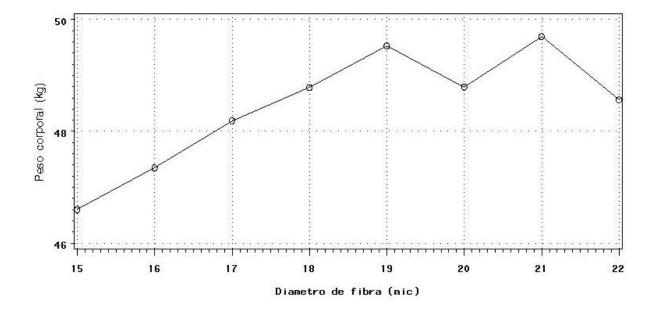

En Tabla 8 se observan correlaciones y regresiones bajas aunque estadísticamente significativas para cabaña Leleque.

Tabla 8: Correlaciones y regresiones con PDF de primer esquila en el plantel de Cabaña Leleque

Variable	Correlaciones (%)	Regresiones (/mic)
Peso 14m (kg)	0.13 *	0.61 *
Peso vellón 14m (kg)	0.23 *	0.14 *
Rinde 14m (%)	0.05 ns	0.16 *

Por cada micrón se incrementa el peso corporal en 0.61 kg aunque en la Figura 3 se puede observar que este efecto es más pronunciado a bajos PDF. El incremento de peso de vellón por cada micrón es de 0.14 kg.

Figura 3: Relación entre PDF y caracteres medidos a la primer esquila en plantel de Cabaña Leleque

Discusión

En la literatura revisada por Fogarty (1995) los promedios de correlaciones fenotípicas de PDF a la primer esquila con peso al nacimiento, peso al destete y peso a la primer esquila fueron 0, 0.05 y 0.1, respectivamente. En el presente trabajo la correlación de PDF de cualquiera de las primeras 3 esquilas de ovejas con el peso corporal al nacimiento o al destete de cualquiera de sus primeros dos corderos no fue significativamente diferente a cero, salvo por la correlación entre primer PDF y el peso al destete del primer cordero que de todos modos resultó baja (0.14). Correlaciones de PDF con peso al nacimiento, peso al destete y peso a la primer esquila propios también resultaron insignificantes. Las correlaciones de pesos adultos observadas en la progenie de padres en prueba de progenie fueron insignificantes a la primer esquila y 0.1 para segunda esquila. En esa majada la correlación de peso al nacimiento con PDF en las primeras dos esquilas resultó negativa (-0.1).

En consecuencia los resultados obtenidos no permiten avalar las aseveraciones de los productores en cuanto a relaciones desfavorables entre finura y pesos corporales. En particular no se puede concluir que corderos de madres de lana fina sobreviven menos debido a un supuesto menor peso al nacimiento que corderos de madres con lana más fuerte. Es importante enfatizar que este resultado es válido en el rango de PDF observado en las bases de datos analizadas. No se excluye la posibilidad de que fuera de ese rango o que para otras poblaciones o genotipos de ovinos Merino las relaciones sean desfavorables. Kuchel y Lindsay (1999) observaron en Australia que ovejas superfinas producían corderos considerablemente más livianos que ovejas de lana media.

La correlación de PDF con peso de vellón observada en tres de las cuatro bases de datos analizados en este trabajo es consistente con el promedio de la literatura (0.20). En Río Mayo esa correlación en las 3 primeras esquilas resultó 0.12, 0.21 y 0.22, para la primera esquila en las majadas de Pilcaniyeu y Leleque resultó 0.25 y 0.23 respectivamente. En la Central de prueba de Pilcaniyeu la misma correlación no de solo 0.06 y para la segunda esquila la correlación resultó 0.16 también menor a los 0.3 que promedia la literatura para vellones de adultos (Atkins 1999). Las regresiones variaron en los cuatro análisis desde insignificantes (en central de Pilca) hasta 0.14 kg/mic en Leleque. Esta débil asociación de PDF con peso de vellón indica que ovinos de lana fina no necesariamente producen poca lana o en todo caso la reducción del peso de vellón por cada micrón de afinamiento es insignificante. Por ejemplo vellones de 4 kg y PDF de 20 mic pesarían 0.14 kg menos si fuesen un micrón más finos sin embargo el valor económico de esos vellones a la apertura de la zafra 2000/2001 hubiese sido 56% mayor (SAGPyA 2001). El cálculo asume calidad adecuada en el vellón más fino.

La relación de PDF con caracteres de calidad de la lana, analizada en la Central de Prueba de Pilcaniyeu, arrojó correlaciones desfavorables con largo de mecha (0.20) y resistencia a la tracción (0.22) en ambos casos valores comparables a 0.1 y 0.2 respectivamente consignados en la literatura (Atkins 1999). Por cada micrón de afinamiento el largo de mecha se reduce en 1.22 mm y la resistencia a la tracción se reduce en 1.05 N/ktex. La importancia de estos cambios depende del punto de partida ya que la respuesta en el precio de la lana no es lineal. Para lanas muy finas con resistencias a la tracción en niveles críticos la reducción de un N/ktex puede resultar en descuentos importantes o descalificatorios. En otro trabajo se comprueba que lana de borregos esquilada en diciembre suele estar en esa condición (Mueller *et al* 2001). Las correlaciones y regresiones de PDF con otras características de calidad como el porcentaje de fibras mayores a 30 mic y el color son favorables a lanas más finas.

Es posible que la ausencia total de relación entre PDF y producción de lana observada en la Central de Pilcaniyeu tenga que ver con el tipo de carneros usados en esa majada y que responden a genotipos de alta producción de lana fina. En este trabajo se analizaron las relaciones fenotípicas con PDF, aquellas sobre las que opinan los productores aunque para el diseño de programas de mejoramiento genético interesan parámetros genéticos, la estimación de tales parámetros es motivo de otro trabajo.

Conclusión

Se concluye que en el rargo de finuras observables en majadas Merino de Patagonia no hay relaciones antagónicas relevantes entre PDF y el peso de corderos o caracteres del vellón.

Bibliografía

- Atkins KD. 1997. Genetic improvement of wool production. En: Piper L y Ruvinsky A (Eds) The genetics of sheep. CAB International, p 471-504.
- Duga L. 2000. Nuevas exigencias en clasificación, acondicionamiento y control de calidad de lanas. En: Mueller JP, Taddeo HR y Uzal FA (Eds.) Actualización en Producción Ovina. INTA Bariloche, p. 113-132.
- Fogarty NM. 1995. Genetic parameters for live weight, fat and muscle measurements, wool production and reproduction in sheep: a review. Animal Breeding Abstracts 63, 101-143.
- Kuchel RC y Lindsay DR. 1999. Maternal behavior and the survival of lambs in superfine wool sheep. Reproduction, Fertility & Development 11, 391-394.
- Mueller JP, Duga L, Giraudo C y Bidinost F. 2001. Calidad de vellones en una majada Merino de la Patagonia. Revista de Investigaciones Agropecuarias 30: 101-113.
- SAGPyA. 2001. Boletín de la producción ovina. Dirección de Ganadería. Julio 2001, 21 pp.
- SAS. 1999. The SAS Institute Inc, Release 8.00.