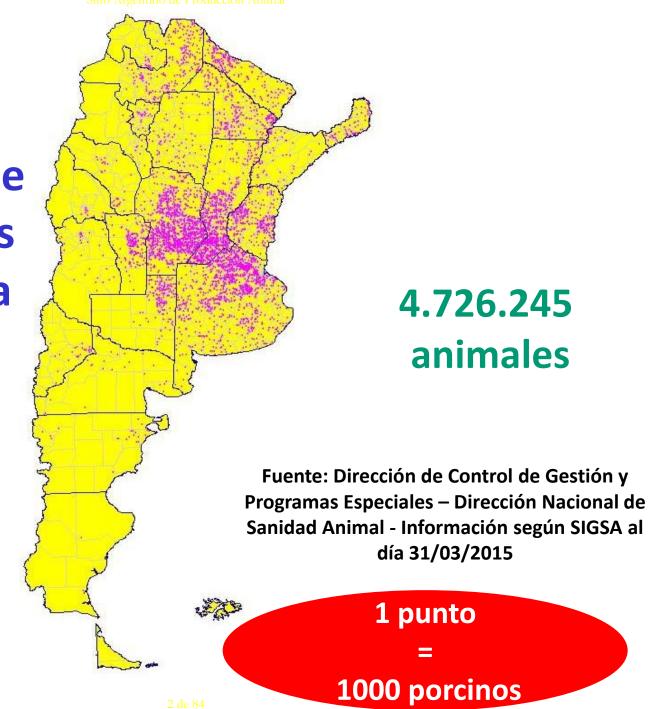
Aprovechamiento de efluente porcino: problemas y oportunidades

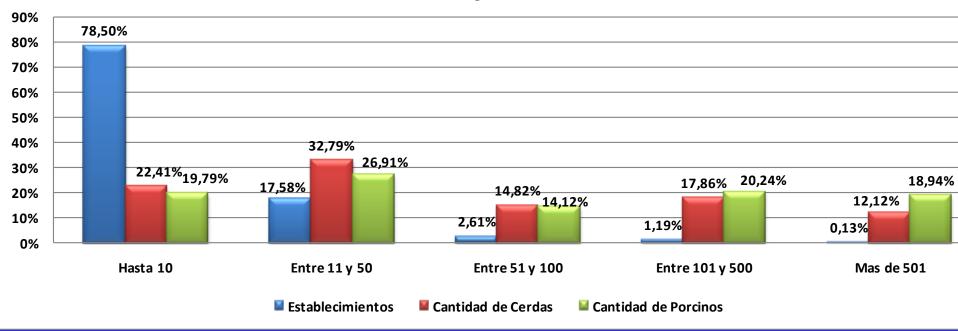

27 y 28 de agosto de 2015 INTA Marcos Juárez - Córdoba

FERICERDO 2015

PUNTO DE ENCUENTRO DE LA PRODUCCIÓN PORCINA NACIONAL

11ª edición

Distribución de las existencias porcinas en la Republica Argentina


Evolución Anual de los Indicadores Porcinos

AÑO	FAENA TOTAL	PRODUCCIÓN	IMPORT	EXPORT	CONSUMO	CONS. HAB
		(Tn Eq Res)	(Tn)	(Tn)	(Tn)	(Kg./Hab/año)
2003	1,812,927	158,310	44,695	980	202,025	5.33
2004	2,148,509	185,300	36,270	1,633	219,937	5.75
2005	2,470,124	215,496	26,453	1,798	240,151	6.22
2006	3,023,388	262,173	27,053	1,944	287,282	7.37
2007	3,200,115	276,116	38,773	2,236	310,507	7.94
2008	3,153,829	274,246	35,058	3,638	305,157	7.62
2009	3,339,759	288,853	35,856	5,287	319,422	7.96
2010	3,234,133	279,102	48,080	3,903	323,279	8.06
2011	3,433,378	300,663	54,973	5,377	350,370	8.64
2012	3,818,758	331,000	30,604	6,968	354,636	8.56
2013	4,805,499	416,442	16,794	6,430	426,806	10.4
2014	5,110,083	442,025	8 ,929	7 ,568	443,386	10,65

Fuente: Área Porcinos - Dirección de Porcinos, Aves de Granja y No Tradicionales, con datos de SENASA y Gestión Estratégica de la Información. MINAGRI.

Estratificación de establecimientos según cantidad de cerdas

Fuente: SIGSA - Dirección de Control de Gestión y Programas Especiales - Dirección Nacional de Sanidad Animal - SENASA

OBJETIVOS DEL MANEJO ADECUADO DE LOS RESIDUOS ORGANICOS

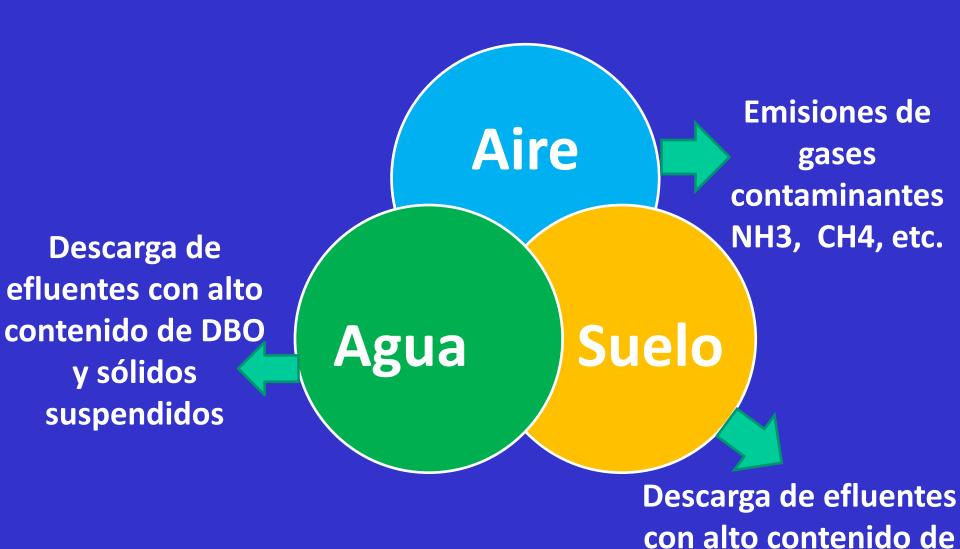
- •Reciclado de productos y/o subproductos de otras actividades agrícolas o ganaderas
- Valorización de estos subproductos, aprovechando sus contenidos nutricionales
- Minimización del impacto ambiental generado

¿Por qué no se utilizan correctamente los residuos orgánicos?

- Contenido en nutrientes poco conocido
- Mala predicción del nitrógeno disponible
- Prácticas de aplicación distribución
 - manejo inadecuado
- Percepción "inflada" de los costos de aplicación
- Continúa siendo una operación desagradable

Falta de confianza por parte de los usuarios

Problemática vinculada a la generación de efluentes


- Disposición del efluente en sitios aledaños
- Evacuación del efluente en canales de desagües sin previo tratamiento
- Sistemas de tratamiento ineficientes en lagunas

- •Falta de aislación ———> Riesgo de infiltración
- •Inadecuados tiempos de retención hidráulica
- remoción de materia orgánica degradable

Problemática vinculada a la generación de efluentes

8 de 84

metales pesados

Características químicas de los efluentes

Parámetro	Tambo líquido	Tambo sólido	Cerdo	
MS	1,7%	28,4%	3,8%	
N	3.045 mg/l	0,73 g/100g	7.642mg/l	
Р	121 mg/l	0,07 g/100g	143 mg/l	
Na	734 mg/l	690 mg/kg	1.310 mg/l	
рН	6,79	8,60	7,45	
Conductividad	5,49 mS/cm	2.64 μs/cm	11,15 mS/cm	
DQO	9.458 mg/l O ₂	72,4 g/l O ₂	11.170 mg/l O ₂	
DBO	3.200 mg/l O ₂	17 g/l O ₂	4.300 mg/l O ₂	

Decreto Nº 5837

Resolucion 1089/82

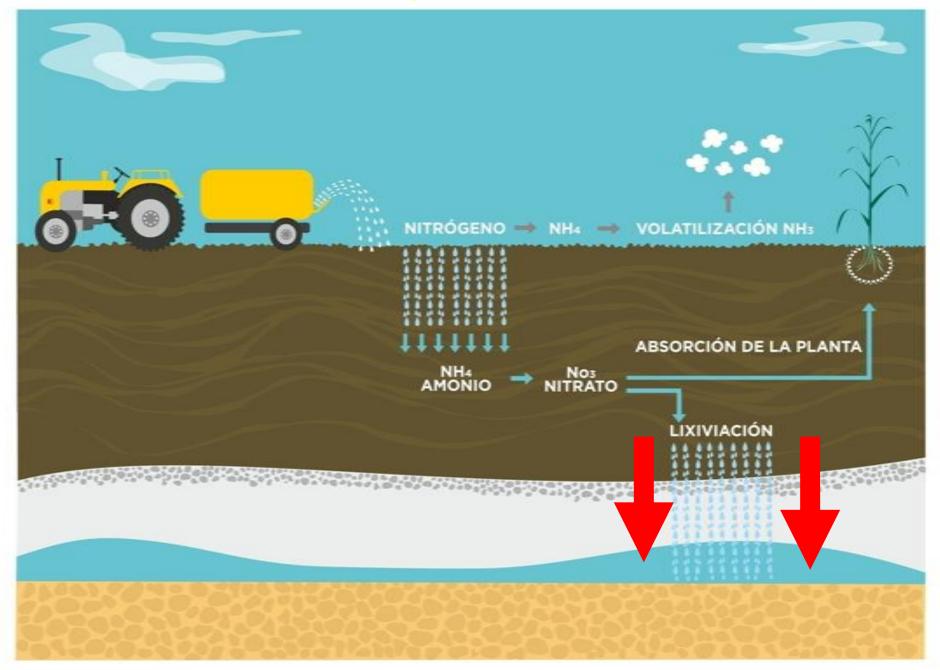
Resolucion 415-99

Comparativa de parámetros de vuelco - Legislación Provincial

Decreto Nº 2793/06

Resolucion 336-03

			Buenos Aires		La Pampa		Entre Rios		Santa Fe		Córdoba	
			Absorción Por el suelo		Absorción Por el suelo		Absorción Por el suelo		Desagüe a campos de		Absorción Por el suelo	
Parametro	Unidad	Cuerpo Superficial	(fertirriego)	Cuerpo Superficial	(fertirriego)	Cuerpo Superficial	(fertirriego)	Cuerpo Superficial	drenaje (fertirriego)	Cuerpo Superficial	(fertirriego)	
Temperatura	°C	< 45	< 45	< 45		< 45		< 45	No se considera	<= 40		
pH	upH	6,5 - 10	6,5 - 10	6,5 - 10	5,5 - 10	5,5 - 10		5,5 - 10	5,5 - 10	6,0 - 9,0		
Solidos Sedimentables (10 min)	ml/l	Ausente	Ausente	Ausente	<= 0,5	< 5		< 0,5	< 0,5	-		
Solidos Sedimentables (2 horas)	ml/l	<= 1	<= 5	<= 1	<= 1	< 30			<1	<= 1		
Solidos flotantes						Ausente						
Sulfuros	mg/l	<= 1	<= 5	<= 1	<= 1	<1		< 1	<1	<= 1		
SSEE	mg/l	<= 50	<= 50	<= 50	<= 100	< 100		< 100	< 100	<= 50		
Cianuros	mg/l	<= 0,1	Ausente	<= 0,1	<= 0,1	< 0,1		< 0,2		<= 0,1	<= 0,02	
Hidrocarburos totales	mg/l	<= 30	Ausente	<= 50	<= 50					<= 30		
Cloro Libre	mg/l	<= 0,5	Ausente	<= 0,5								
Coliformes Fecales	NMP/100 ml	<= 2000	<= 2000	<= 5000	<= 1000					1000		
Coliformes Totales	NMP/100 ml			<= 20000	<= 20000	<= 5000						
Accident Minerales	/1					- 10						
DBO	mg/l	<= 50	<= 200	<= 50	<= 200	< 50		< 50	< 200	<= 50	<= 30	
DQO	mg/l	<= 250	<= 500	<= 250	<= 350	120		< 75	< 350			
S.A.A.M.	mg/I	<= 2,0	<= 2,0	<= 2,0	<= 2,0	<= 2,0						
Sustancias Fenólicas	mg/l	<= 0,5	<= 0,1	<= 0,5		<= 0,5		< 0,02		<= 0,05		
Sulfatos	mg/l	NE	<= 1000								<= 130	
Carbono Orgánico Total	mg/l	NE	NE									
Hierro (Soluble)	mg/l	<= 2,0	<= 0,1		<= 2,5			< 2,5	< 2,5	<= 2	<= 5	
Manganeso (Soluble)	mg/l	<= 0,5	<= 0,1									
Cinc	mg/l	<= 2,0	<= 1,0					< 5		<= 0,1	<= 2	
Niquel	mg/l	<= 2,0	<= 1,0							<=2	<= 0,2	
Cromo Total	mg/l	<= 2,0	Ausente	<= 2,0	<= 0,5					<= 2		
Cromo Hexavalente	mg/l	<= 0,2	Ausente			< 0,2		< 0,1		<= 0,2	<= 1	
Cromo Trivalente	mg/l					< 2,0		<1				
Cadmio	mg/l	<= 0,1	Ausente			< 0,1		< 0,02		<= 0,1	<= 0,01	
Mercurio	mg/l	<= 0,005	Ausente	<= 0,005	<= 0,005	< 0,005				<= 0,005		
Cobre	mg/l	<= 1,0	Ausente					< 0,4		<= 0,1	<= 0,2	
Aluminio	mg/l	<= 2,0	<= 1,0								<= 5	
Arsénico	mg/l	<= 0,5	<= 0,1	<= 0,5	<= 0,2	< 0,5		< 0,2		<= 0,5	<= 0,1	
Bario	mg/l	<= 2,0	<= 1,0									
Boro	mg/l	<= 2,0	<= 1,0								<= 0,5	
Cobalto	mg/l	<= 2,0	<= 1,0									
Selenio	mg/l	<= 0,1	Ausente								<= 0,02	
Plomo	mg/l	<= 0,1	Ausente	<= 0,5	<= 0,5	< 0,5		< 0,1		<= 0,5	<= 0,5	
Plaguicidas Organoclorados	mg/l	<= 0,05	Ausente		-							
Plaguicidas Organofosforados	mg/l	<= 0,1	Ausente									
Nitrógeno Total	mg/l	<= 35	<= 105	<= 15						<= 20	<= 30	
Nitrógeno Amoniacal	mg/l	<= 25	<= 75									
Nitrógeno Orgánico	mg/l	<= 10	<= 30									
Fósforo Total	mg/l	<= 1,0	<= 10	<= 10	40.1.0					<= 10		
					12 de 8	4						


Zonas vulnerables de contaminación

Cantidad máxima de nitrógeno (kg N/ha y año) aplicable en zonas vulnerables. Fuente: Decreto 136/2009.

Cultivo	Secano /Regadío	N total	N en fertilizantes orgánicos	N en fertilizantes minerales o en agua de riego
Twice	Secano	170	170	120
Trigo	Regadío	210	170	150
Cahada	Secano	170	170	120
Cebada	Regadío	210	170	150
Maíz	Secano	210	170	150
	Regadío	300	170	200
Causa	Secano	200	170	150
Sorgo	Regadío	250	170	170
Girasol	Secano	150	150	100
Girasoi	Regadío	170	170	120
Arroz	Regadío	170	170	150
Alfalfa	Secano	100	100	30
Alfalfa	Regadío	170	170	50

Mapa de zonas vulnerables de Cataluña, año 2009. Fuente: GESFER 2010.

Composición de los efluentes

Desde el punto de vista químico, los residuos ganaderos presentan una gran complejidad. A pesar de tener una composición cualitativa similar (agua, materia orgánica, macroelementos, elementos secundarios y microelementos), su composición cuantitativa es muy heterogénea.

Depende de diversos factores:

- Edad y tipo de animal
- Sistema de manejo
- Tipo de alimentación
- Época del año

El Nitrógeno (N) se encuentra en 3 formas:

Mineral

Generalmente en forma amoniacal o uréica.

Orgánico-mineral

Fracción orgánica mineralizable al año siguiente de la aplicación. Orgánico

Esta fracción enriquecerá la materia orgánica del suelo y será liberada mediante mineralización progresiva durante los años siguientes a la aplicación.

- Importantes pérdidas por VOLATILIZACIÓN (20-70%).
- Se ha estimado que más del 50% del NH₃ que se volatiliza lo hace en las primeras 24 horas (Pinto et al., 2001).

El Fósforo está contenido esencialmente en las partes sólidas de las heces y se presenta bajo 2 formas:

Forma mineral

Fosfatos solubles en agua. Supone alrededor del 80% del Fósforo total, muy rápidamente utilizable por las plantas

Forma orgánica

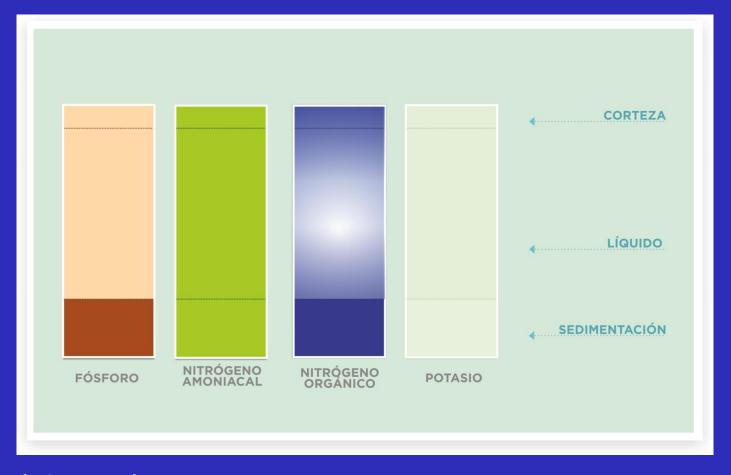
Partes no digeridas de los alimentos. Frecuentemente constituidos de fitina, proteína de reserva de los granos, que será mineralizada muy lentamente en el suelo.

Su valor fertilizante o coeficiente de equivalencia inmediato es de 0,85 en relación con el superfosfato (Ziegler et Héduit, 1991).

El potasio (K) está contenido principalmente en la orina, encontrándose en forma se sales minerales, por lo que su disponibilidad para las plantas es similar a la de un abono mineral

El magnesio (Mg) tiene un comportamiento similar al del K, considerándose que, en general, su disponibilidad es equivalente a la de los abonos magnésicos minerales

La acción fertilizante de los estiércoles en elementos como el P, K y micronutrientes resulta afectada en gran medida por la capacidad tampón (reguladora) del suelo, por lo que el impacto ambiental de estos elementos es mucho más reducido que en el caso del N.


Composición media de los efluentes de cerdo

Fase	MS (%)	MO (%MS)	N total (Kg/m³)	N amon. (Kg/m³)	P ₂ O ₅ (Kg/m ³)	K ₂ O (Kg/m³)
Engorde	9,6	75,8	7,3	3,8	5,6	4,1
Gestación	3,2	66,3	3,8	2,5	3,3	2,2
Lactación			3,4		2,1	2,1
Transición			5,3		4	2,8
Ciclo cerrado	5,8	66,1	4,9	2,9	4,1	2,7

(Babot et al., 2004)

Composición variable !!!!


Estratificación en fosas

Fuente: Abaigar, et al 2004

Evolución del contenido en nutrientes durante el vaciado de la fosa

Fuente: Abaigar, et al 2004

Digestión anaeróbica

Los objetivos que se logran con la digestión anaerobia son:

- Homogeneiza la composición y las partículas en suspensión.
- Reduce los malos olores y los compuestos orgánicos volátiles.
- •Reduce el contenido en materia orgánica (estabilización y mineralización) y mantiene las concentraciones de nutrientes.
- •La fracción de nitrógeno en forma amoniacal aumenta.
- •Reduce el contenido de microorganismos patógenos (especialmente si se realiza a 55 ºC, es decir, en rango termofílico).

Flotats et al., 2001

Métodos de aplicación de enmiendas orgánicas

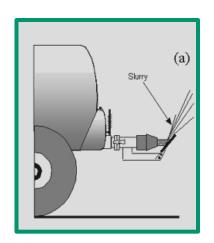
Maquinaria para distribución de efluentes líquidos:

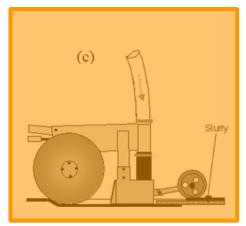
En toda la superficie:

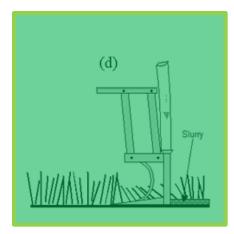
- » Método de boquilla única de aspersión en abanico
- » Sistema de barra de distribución con multiboquilla

De manera localizada:

- » Método de barras con tubos colgantes
- » Método de enterrado o inyección
- Maquinaria para distribución de estiércol sólido




Objetivo: reducir las emisiones de NH₃


	Table 2.4: Loss	of NH3 in a	range of slu	rry spreadin	g trials repo	rted in the liter	ature			
		Ammonia emission (% of splash plate)								
Source*	а	b	С	d	е	f	g	h		
Splash plate	100	100	100	100	100	100	100	100		
Band			61	26				47		
TF		38	57		31	20-50	20-50	28		
S. Injector	12.5	15	43	8	15			48		

66
45
30
20

Método de aplicación sobre toda la superficie

Boquilla única de aspersión en abanico

Método tradicional de abanico

Método abanico invertido

Método de aplicación localizada de efluentes

Método de barras con tubos colgantes

 Constituido por una tubos flexibles, con ui salidas de 25 a 30 cm.

-Este método supone con cuchillas circulare individuales.

- -Deposita el efluente
- -Diámetro de mangue

Método de aplicación localizada de efluentes

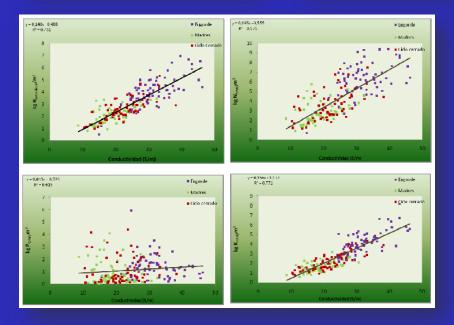
Método de enterrado o inyección

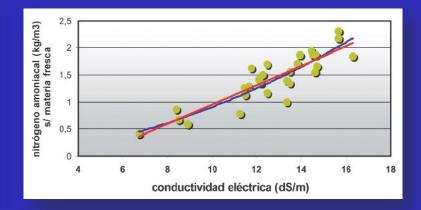
Aplicación mediante enterrador de rejas

Otros equipos de aplicación de efluente

Maquinaria para distribución de estiércol sólido

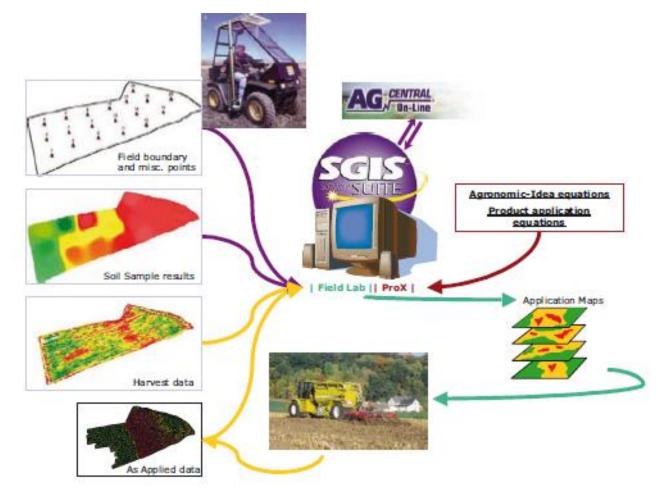
El uso de caudalímetros es cada vez más necesario




Nuevas tecnologías para una aplicación correcta

(J. Parera, 2008)

(Mangado et al., 2006 – Navarra Agraria)


Incorporación de herramientas de agricultura de precisión en la aplicación de enmiendas orgánicas

Paso I:

Recopilación de información (contenido de nutrientes en suelo, tipo de suelo, cosecha esperada,...). Esta información es básica para el establecimiento de la dosis óptima

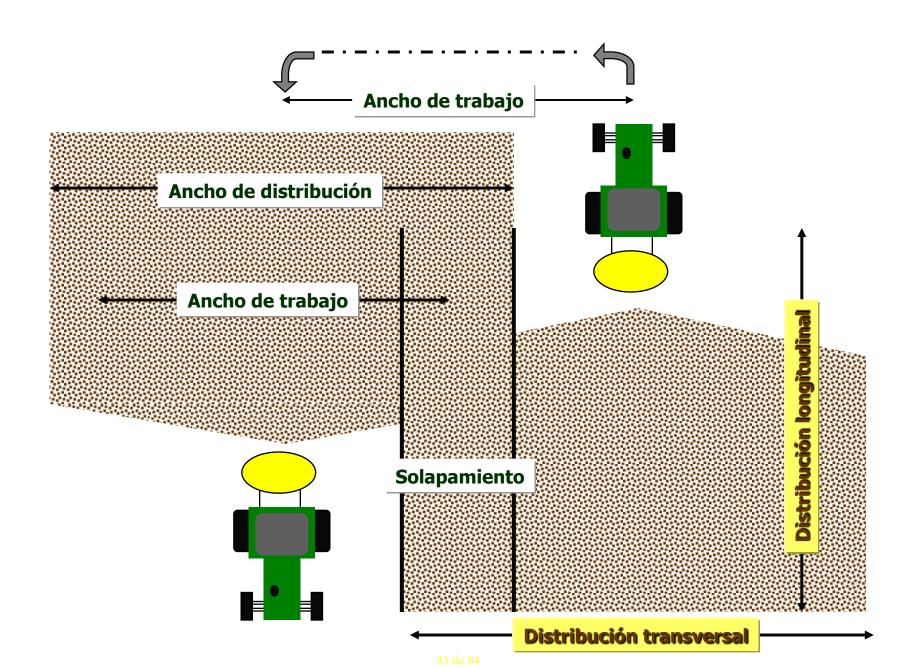
Paso II:

Con los datos del SIG y las recomendaciones locales se establece el mapa de aplicación, en función de las necesidades de los cultivos

Objetivo:

Garantizar una distribución uniforme (transversal y longitudinal)

Caudal: 3.600 kg/min


Ancho de trabajo: 9 m

Velocidad: 7.5 km/h

Dosis (kg/ha) =
$$\frac{3.600 \times 600}{9 \times 7.5}$$
 = 32.000

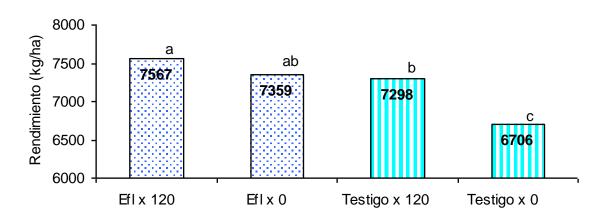
Para una correcta aplicación de residuos orgánicos como abono agrícola es necesario considerar la composición del mismo, especialmente el contenido en macronutrientes y las necesidades del cultivo al que se va a aplicar.

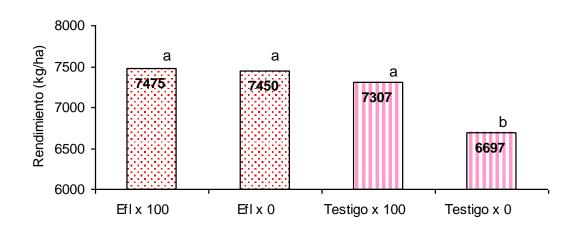
El síntoma más típico de la degradación química de los suelos

Ensayo de evaluación de efluentes porcinos en la producción de maíz

Tratamiento	Efluente	Fósforo (kg/ha FDA)	Nitrógeno (kg/ha Urea)	
1	Efluente	120	0	
2	Efluente	120	100	
3	Efluente	0	0	
4	Efluente	0	100	
5	testigo	120	0	
6	testigo	120	100	
7	Testigo	0	0	
8	Testigo	0	100	

Híbrido: AX882 MGHCL; 70000 semillas /ha; fecha de siembra: 18/09/13


Análisis de efluente


рН	C.E.	Nt	N-NH4	Р	Ca	Na	K	
	mS/cm	g/l		mg/l				
7,95	17	2,46	2,07	0,10	246	581	1903	

Parámetros químicos del suelo (0-20 cm) al momento de la siembra

	M.O.	Nt	Р	S-SO ₄	рН	C.E.
	C	%	р	om		mS/cm
Efluente	2,72	0,136	17,8	14,3	5,65	1,58
Testigo	2,63	0,132	12,9	9,8	5,82	0,76

Todos los valores se encuentran dentro de rangos adecuados. Se observó un incremento importante de C.E. en la parcela con aplicación de efluente respecto a la parcela testigo

Tratamiento efluente x kg Urea ha⁻¹.

Parámetros químicos del suelo (0-20 cm) evaluados a la cosecha del cultivo

	M.O.	Nt	Р	S-SO ₄	рН	C.E.
	0	%	p	om		mS/cm
Efluente	2,93	0,170	24,7	9,2	5,73	0,54
Testigo	2,73	0,137	13,3	5,8	6,18	0,29

Fue muy importante el incremente del fósforo (11,4 ppm). Para 1 ppm se necesitan 6 kg P_2O_5 , el incremento observado sería equivalente a la utilización de 148,7 kg de FDA. Disminuyó considerablemente la CE.

CONCLUSIÓNES

- Los tratamientos con efluente presentaron los mayores rendimientos.
- •El efluente porcino sustituyó la aplicación de P y N en las dosis empleadas en este trabajo.
- •Se observa un importante incremento de la fertilidad potencial del suelo en las parcelas con aplicación de efluente.

¿Por qué caracterizar ambientes para el manejo de la Fertilidad de los Suelos y de los Fertilizantes?

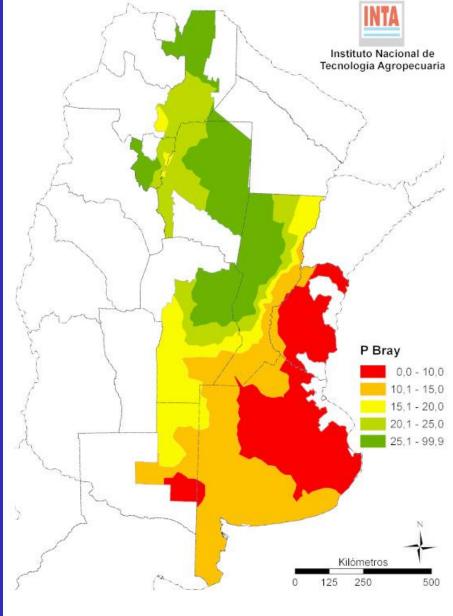
Por la variabilidad que existe:

- NATURAL (ocurre a escala grande y mediana).
- INDUCIDA (por Manejo, ocurre a escala grande, mediana y pequeña)

Y por eso condicionan la efectividad de los análisis de suelos y de plantas, al diagnóstico y a la recomendación de la nutrición y la fertilización.

Variabilidad

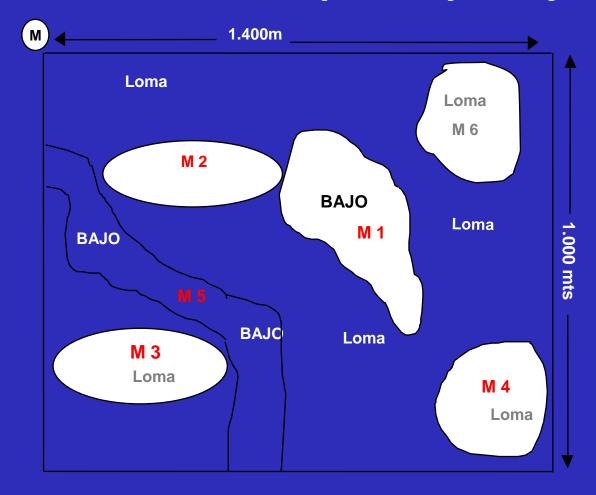
- + por paisaje
- + por manejo
- + por materia orgánica
- + por fósforo
- + por acidez del suelo (calcio)
- + por salinidad del suelo
- + por Propiedades Físicas del suelo


Variabilidad en gran escala

Sitio Argentino de Producción Animal

Distribución de P-Bray I del horizonte superficial (0-20cm) en suelos agrícolas de la región pampeana y extrapampeana.

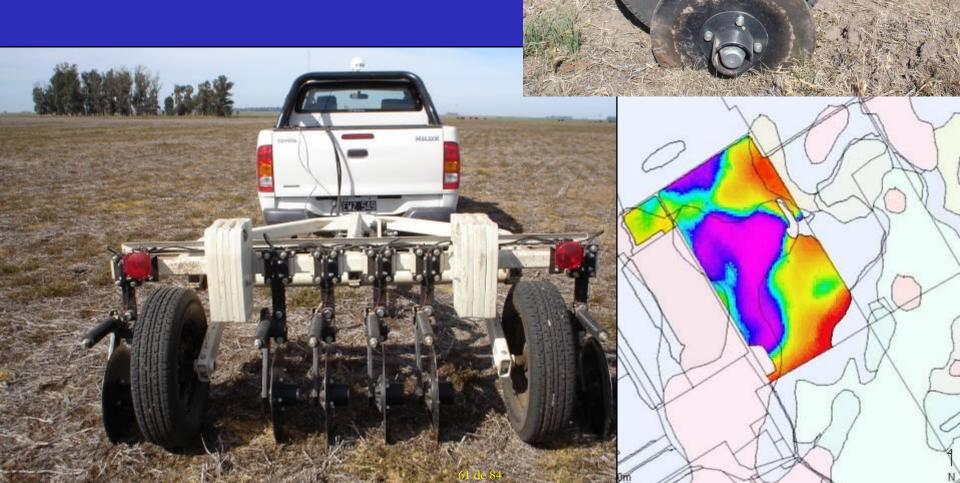
Sainz Rozas et al. (2011).



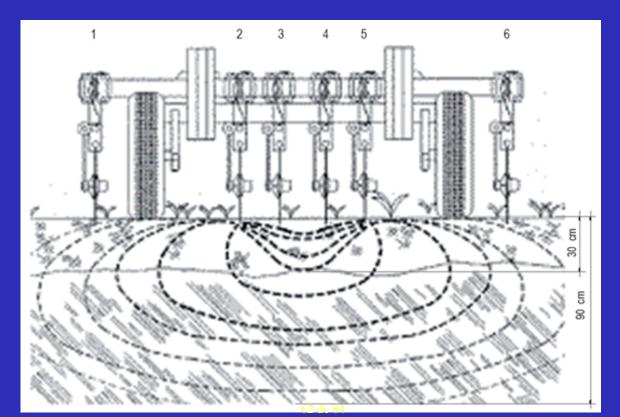
Variabilidad en mediana escala

Variabilidad por el paisaje

Darwich, 2002



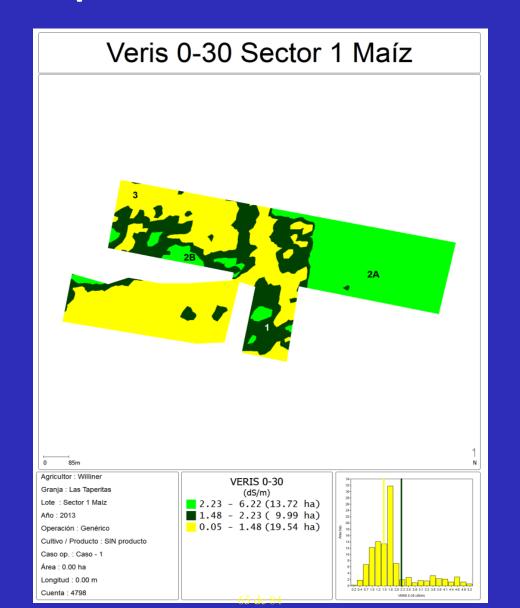
Variabilidad debida al manejo



Sitio Argentino de Producci

AMBIENTES «ANTROPICOS»

El Veris 3100 es un dispositivo de contacto, consta de 6 discoselectrodos que penetran aproximadamente 5 cm en el suelo. Dos discos emiten una corriente eléctrica continua y simultáneamente otros dos electrodos detectan la diferencia de potencial, dada por resistencia a través del suelo. La profundidad de medición se basa en la distancia que hay entre los discos-electrodos emisores y receptores (equidistantes).



Uso de efluentes porcinos en función de los ambientes edáficos

Mapa de conductividad eléctrica aparente, profundidad 0-30cm.

Parámetros químicos del suelo (0-20 cm)

Ambiantas	МО	Nt	Р	N-NO ₃	S-SO ₄	рН
Ambientes	9	6	ppm			
1 Verde oscuro	4,00	0,20	90,5	14,4	31,8	6,50
2 Verde claro	3,03	0,15	39,0	11,1	38,6	6,14
3 Amarillo	2,71	0,14	115,5	16,9	26,9	6,61

Balance catiónico

Ambiente	Ca	Mg	K	Na	CIC	CE 0-20cm	Sat. Ca
	Meq/100g				dS/m	%	
1	8,9	2,0	2,1	0,15	24,2	0,037	37
2	10,6	2,2	1,6	0,10	23,0	0,053	46
3	7,5	2,0	2,1	0,15	22,6	0,041	33

La saturación de Ca oscila entre un 33 a un 46%, todos valores por debajo del valor deseado del 65%. Como también el Mg está por debajo del 10% en el complejo de intercambio, se sugiere el uso de dolomita para corregir estas deficiencias. Las cantidades necesarias serían las siguientes:

Ambiente 1: 8.900 kg/ha

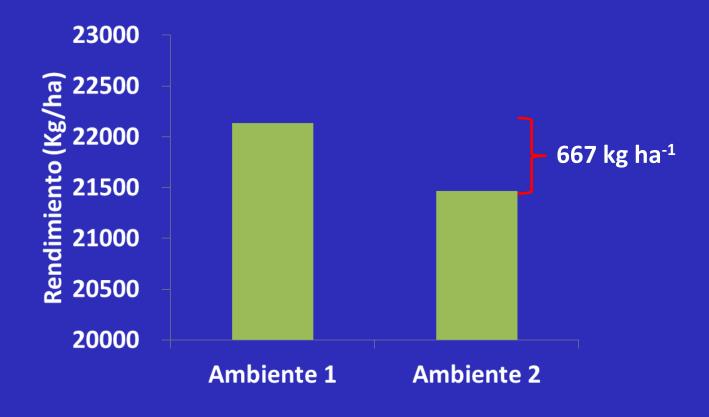
Ambiente 2: 6.000 kg/ha

Ambiente 3: 9.000 kg/ha

Micronutrientes

Ambiente	Zn	Cu	Mn	В	Со	Mb	Fe		
	Ppm								
1	3,94	3,33	232,2	0,24	1,61	0,71	365,7		
2	1,86	4,09	300,0	0,89	2,21	0,77	287,4		
3	1,78	3,23	160,9	0,12	1,26	0,73	338,6		

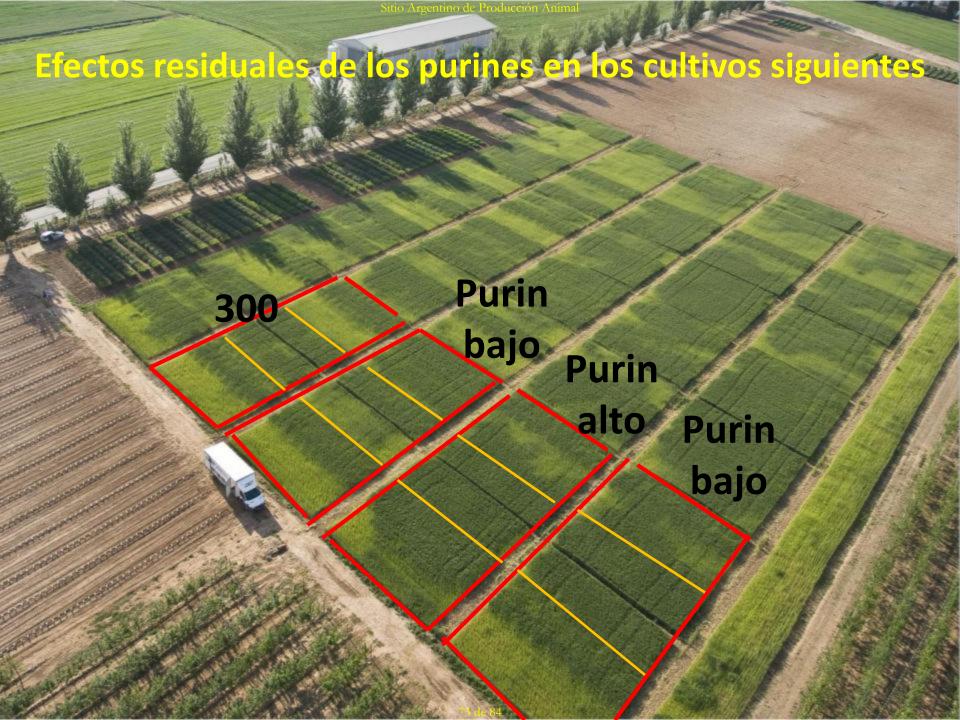
Caracterización del efluente porcino empleado.


рН	Sol Tot	Sol Vol	C.E.	Nt	N-NH ⁴	Р	Ca	Mg	Na	K
	m	mg/l mS/cr				mg	g/l			
8,22	5096	906	6,88	100,8	29,4	43,4	75	38	709	1385

Aporte de nutrientes (kg) cada 10.0001 de efluente

рН	Sol Tot	Sol Vol	C.E.	Nt	N-NH ⁴	Р	Ca	Mg	Na	K
	m	g/l	mS/cm	mg/l						
8,22	50,96	9,06	6,88	1,008	0,294	0,434	0,75	0,38	7,09	13,85

Producción de materia seca de maíz (kg ha⁻¹) por ambiente. Campaña 2013-2014.


Parámetros químicos del suelo (0-20 cm) evaluados a la cosecha del cultivo

Ambiantas	МО	Nt	Р	N-NO ₃	S-SO ₄	рН	CE
Ambientes	9	6				dS/m	
1 Verde oscuro	4,39	0,27	144,8	5,7	14	5,7	0,5
2 Verde claro	4,08	0,25	101,6	8,8	19,6	5,7	1

Fue muy importante el incremente del fósforo, lo que nos indicaría un balance de nutrientes altamente positivo para el sistema. El valor de pH en los dos ambientes posterior a la cosecha fue bastante ácido y debería corregirse. La CE a la profundidad de 0-20 cm, si bien se incrementó en los 2 ambientes, se mantuvo por debajo de valores que generarían inconvenientes para el normal desarrollo de los cultivos.

GIMENELLS NITROGEN

			P50	P50	P50	P30	P30	P30
N200	N300	N150	N200	N100	N0	N100	N200	N0
48	<i>37</i>	36	26	25	16	15	6	5
P50	P50	P50				P50	P50	P50
N0	N200	N100	N200	N150	N250	N0	N100	N200
47	38	35	27	24	17	14	: 7	4
P30	P30	P30				P30	P30	P30
N100	N0	N200	N300	N100	N0	N200	N0	N100
46	39	34	28	23	18	13	8	3
			P30	P30	P30			
N100	N250	N0	N100	N0	N200	N100	N300	N150
45	40	33	29	22	19	12	9	2
			! !		i] 		
N250	N0	N150	N100	N300	N200	N0	N200	N250
44	41	32	30	21	20	11	10	1
//48	///42/	[//34]						

Línies d'aspersors

CARRETERA < SUCS - GIMENELLS >

Efecto de la aplicación de purines y del adonado nitrogenado en cobertera en la producción de maíz. Gimenells, 2002-2007. (Berenguer et al., 2007)

Purín	N	Producción
(m³/ha)	(kg/ha)	(kg/ha)
0	0	8.517
	100	12.369
	200	13.764
30	0	13.185
	100	14.093
	200	14.015
50	0	14.080
	100	14.089
	200	14.438

Efecto de la aplicación de purines y de N mineral en aspectos de calidad del suelo

Después de 10 años de aplicación continua. Gimenells 2011.

Tratamientos	lombrices (ind/m²)	Respiración (gCO ₂ /m ² *h)	Biomasa microbiana (mgC/kg suelo)
N 300 kg/ha/año	4	0,34	8.059
Purin 50 m³/ha /año	11	0,54	9.763

Efecto de la aplicación de purines y del adonado nitrogenado en cobertera en la producción de maíz. Gimenells, mitjana 2002-2011.

(Biau, et al. 2012)

Purín	N	Producción
(m³/ha)	(kg/ha)	(kg/ha)
0	300	15.800
50	0	12.200

Consideraciones finales:

La utilización de residuos debe ser tomada como una estrategia a largo plazo donde se preserva el medio ambiente y se conserva la fertilidad del suelo.

Son una alternativa viable para reutilizarlos dentro del sistema y evitar una fuente de contaminación, solucionando así el destino final de los mismos.

Es posible considerar que una fertilización basada exclusivamente en aportes de estiércol podría reducir o sustituir parte de la fertilización inorgánica.

Se observa un importante incremento de la fertilidad potencial (incrementos en el MO y P) y actual del lote.

La producción de forrajes y/o cultivos con la utilización estratégica de los residuos ganaderos es una buena opción para mejorar la eficiencia del reciclado de nutrientes y producir en una forma más sustentable.

Es importante e indispensable conocer la calidad del efluente utilizado, para prevenir potenciales daños al suelo, además de monitorear periódicamente el sodio intercambiable (PSI) y las propiedades físicas del suelo.

Muchas gracias

Ing. Agr. Nicolás Sosa sosa.nicolas@inta.gob.ar INTA EEA Manfredi

